A Constant in the Theory of Trigonometric Series

By R. P. Boas, Jr. and Virginia C. Klema

It is known [1, vol. 1, p. 191] that there is a number $\alpha_{0}, 0<\alpha_{0}<1$, such that for each $\alpha \geqq \alpha_{0}$ the partial sums of $\sum_{n=1}^{\infty} n^{-\alpha} \cos n x$ are uniformly bounded below, whereas for $\alpha<\alpha_{0}$ they are not; α_{0} is the root of

$$
F(\alpha) \equiv \int_{0}^{3 \pi / 2} u^{-\alpha} \cos u d u=0
$$

The computation from an ALGOL program on the IBM 709 at Northwestern University gives the following results:

α	$F(\alpha)$
0.30480	$-0.12468407\left(10^{-3}\right)$
0.30481	$-0.88087283\left(10^{-4}\right)$
0.30482	$-0.51491894\left(10^{-4}\right)$
0.30483	$-0.14883466\left(10^{-4}\right)$
0.30484	$0.21690037\left(10^{-4}\right)$
0.30485	$0.58313366\left(10^{-4}\right)$
0.30486	$0.94888266\left(10^{-4}\right)$
0.30487	$0.13149530\left(10^{-3}\right)$.

Hence $0.30483<\alpha_{0}<0.30484$.
Northwestern University
Evanston, Illinois

1. A. Zygmund, Trigonometric Series, 2nd ed., Cambridge University Press, Cambridge, 1959.
[^0]
[^0]: Received May 6, 1964.

